Telegram Group & Telegram Channel
NumPy tricks for beginners :

πŸ‘‰ Reshaping arrays: NumPy provides the np.reshape() function, which allows you to change the shape of an array while preserving its data. This can be useful for converting between different data formats, such as converting a one-dimensional array into a two-dimensional matrix. For example, the following code reshapes a one-dimensional array into a two-dimensional matrix with two rows and three columns:

import numpy as np

# Create a one-dimensional NumPy array
x = np.array([1, 2, 3, 4, 5, 6])

# Reshape the array into a two-dimensional matrix with 2 rows and 3 columns
x_matrix = np.reshape(x, (2, 3))

# Print the resulting matrix
print(x_matrix)

output:
[[1 2 3]
[4 5 6]]

πŸ‘‰Stacking arrays: NumPy provides the np.vstack() and np.hstack() functions, which allow you to stack arrays vertically or horizontally. This can be useful for combining multiple arrays into a single array, or for splitting a single array into multiple arrays. For example, the following code stacks two one-dimensional arrays vertically to create a two-dimensional matrix:

import numpy as np

# Create two one-dimensional NumPy arrays
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])

# Stack the arrays vertically to create a two-dimensional matrix
z = np.vstack((x, y))

# Print the resulting matrix
print(z)

output:
[[1 2 3]
[4 5 6]]

πŸ‘‰Broadcasting: NumPy allows you to perform mathematical operations on arrays with different shapes, using a technique called broadcasting. This allows you to perform operations on arrays of different sizes, as long as their shapes are compatible. For example, the following code adds a scalar value to each element of a two-dimensional array:

import numpy as np

# Create a two-dimensional NumPy array
x = np.array([[1, 2, 3],
[4, 5, 6]])

# Add a scalar value to each element of the array
y = x + 10

# Print the resulting array
print(y)

output:
[[11 12 13]
[14 15 16]]

Share and Support
@Python_Codes



tg-me.com/python_codes/263
Create:
Last Update:

NumPy tricks for beginners :

πŸ‘‰ Reshaping arrays: NumPy provides the np.reshape() function, which allows you to change the shape of an array while preserving its data. This can be useful for converting between different data formats, such as converting a one-dimensional array into a two-dimensional matrix. For example, the following code reshapes a one-dimensional array into a two-dimensional matrix with two rows and three columns:

import numpy as np

# Create a one-dimensional NumPy array
x = np.array([1, 2, 3, 4, 5, 6])

# Reshape the array into a two-dimensional matrix with 2 rows and 3 columns
x_matrix = np.reshape(x, (2, 3))

# Print the resulting matrix
print(x_matrix)

output:
[[1 2 3]
[4 5 6]]

πŸ‘‰Stacking arrays: NumPy provides the np.vstack() and np.hstack() functions, which allow you to stack arrays vertically or horizontally. This can be useful for combining multiple arrays into a single array, or for splitting a single array into multiple arrays. For example, the following code stacks two one-dimensional arrays vertically to create a two-dimensional matrix:

import numpy as np

# Create two one-dimensional NumPy arrays
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])

# Stack the arrays vertically to create a two-dimensional matrix
z = np.vstack((x, y))

# Print the resulting matrix
print(z)

output:
[[1 2 3]
[4 5 6]]

πŸ‘‰Broadcasting: NumPy allows you to perform mathematical operations on arrays with different shapes, using a technique called broadcasting. This allows you to perform operations on arrays of different sizes, as long as their shapes are compatible. For example, the following code adds a scalar value to each element of a two-dimensional array:

import numpy as np

# Create a two-dimensional NumPy array
x = np.array([[1, 2, 3],
[4, 5, 6]])

# Add a scalar value to each element of the array
y = x + 10

# Print the resulting array
print(y)

output:
[[11 12 13]
[14 15 16]]

Share and Support
@Python_Codes

BY Python Codes


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/python_codes/263

View MORE
Open in Telegram


Python Codes Telegram | DID YOU KNOW?

Date: |

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.

Python Codes from ye


Telegram Python Codes
FROM USA